Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: covidwho-20232730

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Viruses , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Zika Virus Infection/drug therapy , Zika Virus/genetics , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , SARS-CoV-2 , Chikungunya virus/genetics , Peptides/pharmacology , Peptides/therapeutic use
2.
Am J Infect Control ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2283749

ABSTRACT

Reducing the transmission of SARS-CoV-2 from asymptomatic and pre-symptomatic patients is critical in controlling the circulation of the virus. This study evaluated the prevalence of RT-PCR positivity in serial tests (every 20 days) in 429 asymptomatic health care workers (HCW) and its impact on absenteeism from May to August 2020. Asymptomatic HCW from a COVID-19 reference hospital in Campinas (1.2 million inhabitants), Brazil, were tested, screened, and placed on leave. A time-series segmented regression of weekly absenteeism rates was used, and cases of infection among hospitalized patients were analyzed. Viral gene sequencing and phylogenetic analysis were performed on samples gathered from professionals who had a positive result. A significant decrease in absenteeism was detected 3-4 weeks after the intervention at a time of increased transmission within the city. The prevalence of RT-PCR positivity among asymptomatic professionals was 17.3%. Phylogenetic analyses of 59 samples detected nine clusters, two of them strongly suggestive of intra-hospital transmission with strains (75% B.1.1.28) circulating in the region during this period. Testing and placing asymptomatic professionals on leave contributed to control strategy for COVID-19 transmission in the hospital environment, and in reducing positivity and absenteeism, which directly influences the quality of care and exposes professionals to an extra load of stress. BACKGROUND: Reducing the transmission of SARS-CoV-2 from asymptomatic and pre-symptomatic patients is critical in controlling the circulation of the virus. METHODS: This study evaluated the prevalence of RT-PCR positivity in serial tests (every 20 days) in 429 asymptomatic health care workers (HCW) and its impact on absenteeism from May to August 2020. Asymptomatic HCW from a COVID-19 reference hospital in Campinas (1.2 million inhabitants), Brazil, were tested, screened, and placed on leave. A time-series segmented regression of weekly absenteeism rates was used, and cases of infection among hospitalized patients were analyzed. Viral gene sequencing and phylogenetic analysis were performed on samples gathered from professionals who had a positive result. RESULTS: A significant decrease in absenteeism was detected 3-4 weeks after the intervention at a time of increased transmission within the city. The prevalence of RT-PCR positivity among asymptomatic professionals was 17.3%. Phylogenetic analyses of 59 samples detected nine clusters, two of them strongly suggestive of intra-hospital transmission with strains (75% B.1.1.28) circulating in the region during this period. CONCLUSIONS: Testing and placing asymptomatic professionals on leave contributed to control strategy for COVID-19 transmission in the hospital environment, and in reducing positivity and absenteeism, which directly influences the quality of care and exposes professionals to an extra load of stress.

3.
iScience ; : 105702, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2244688

ABSTRACT

The emergence and rapid spread outside of monkeypox virus (MPXV) to nonendemic areas has led to another global health emergency in the midst of the COVID-19 pandemic. The scientific community has sought to rapidly develop in vitro and in vivo models that could be applied in research with MPXV. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures. In vitro models are considered cost-effective and can done in highly controlled conditions, however, they do not always resemble physiological conditions. In this way, several in vivo models are being characterized to meet the growing demand for new studies related to MPXV. In this review, we summarize the main MPXV models that have already been developed and discuss how they can contribute to the advance the understanding of its pathogenesis, replication, and transmission, as well as identifying antivirals to treat infected patients.

4.
Biologicals ; 80: 43-52, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2007466

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in Wuhan, China, is the causative agent of the coronavirus disease 2019 (COVID-19). Since its first notification in São Paulo state (SP) on 26th February 2020, more than 22,300,000 cases and 619,000 deaths were reported in Brazil. In early pandemic, SARS-CoV-2 spread locally, however, over time, this virus was disseminated to other regions of the country. Herein, we performed genomic sequencing and phylogenetic analysis of SARS-CoV-2 using 20 clinical samples of COVID-19 confirmed cases from 9 cities of Minas Gerais state (MG), in order to evaluate the molecular properties of circulating viral strains in this locality from March to May 2020. Our analyses demonstrated the circulation of B.1 lineage isolates in the investigated locations and nucleotide substitutions were observed into the genomic regions related to important viral structures. Additionally, sequences generated in this study clustered with isolates from SP, suggesting a dissemination route between these two states. Alternatively, monophyletic groups of sequences from MG and other states or country were observed, indicating independent events of virus introduction. These results reinforce the need of genomic surveillance for understand the ongoing spread of emerging viral pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Brazil/epidemiology , Genome, Viral/genetics
5.
Microb Genom ; 7(11)2021 11.
Article in English | MEDLINE | ID: covidwho-1501253

ABSTRACT

Since the beginning of the SARS-CoV-2 spread in Brazil, few studies have been published analysing the variability of viral genome. Herein, we described the dynamic of SARS-CoV-2 strains circulating in Brazil from May to September 2020, to better understand viral changes that may affect the ongoing pandemic. Our data demonstrate that some of the mutations identified are currently observed in variants of interest and variants of concern, and emphasize the importance of studying previous periods in order to comprehend the emergence of new variants. From 720 SARS-CoV-2 genome sequences, we found few sites under positive selection pressure, such as the D614G (98.5 %) in the spike, that has replaced the old variant; the V1167F in the spike (41 %), identified in the P.2 variant that emerged from Brazil during the period of analysis; and I292T (39 %) in the N protein. There were a few alterations in the UTRs, which was expected, however, our data suggest that the emergence of new variants was not influenced by mutations in UTR regions, since it maintained its conformational structure in most analysed sequences. In phylogenetic analysis, the spread of SARS-CoV-2 from the large urban centres to the countryside during these months could be explained by the flexibilization of social isolation measures and also could be associated with possible new waves of infection. These results allow a better understanding of SARS-CoV-2 strains that have circulated in Brazil, and thus, with relevant infomation, provide the potential viral changes that may have affected and/or contributed to the current and future scenario of the COVID-19 pandemic.


Subject(s)
COVID-19/virology , Genome, Viral , Mutation , SARS-CoV-2/genetics , 5' Untranslated Regions/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Brazil/epidemiology , COVID-19/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Selection, Genetic , Young Adult
6.
Front Public Health ; 9: 589564, 2021.
Article in English | MEDLINE | ID: covidwho-1278462

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a global health problem, which is challenging healthcare worldwide. In this critical review, we discussed the advantages and limitations in the implementation of salivary diagnostic platforms of COVID-19. The diagnostic test of COVID-19 by invasive nasopharyngeal collection is uncomfortable for patients and requires specialized training of healthcare professionals in order to obtain an appropriate collection of samples. Additionally, these professionals are in close contact with infected patients or suspected cases of COVID-19, leading to an increased contamination risk for frontline healthcare workers. Although there is a colossal demand for novel diagnostic platforms with non-invasive and self-collection samples of COVID-19, the implementation of the salivary platforms has not been implemented for extensive scale testing. Up to date, several cross-section and clinical trial studies published in the last 12 months support the potential of detecting SARS-CoV-2 RNA in saliva as a biomarker for COVID-19, providing a self-collection, non-invasive, safe, and comfortable procedure. Therefore, the salivary diagnosis is suitable to protect healthcare professionals and other frontline workers and may encourage patients to get tested due to its advantages over the current invasive methods. The detection of SARS-CoV-2 in saliva was substantial also in patients with a negative nasopharyngeal swab, indicating the presence of false negative results. Furthermore, we expect that salivary diagnostic devices for COVID-19 will continue to be used with austerity without excluding traditional gold standard specimens to detect SARS-CoV-2.


Subject(s)
COVID-19 , RNA, Viral , Humans , SARS-CoV-2 , Saliva , Specimen Handling
7.
Neurosci Biobehav Rev ; 124: 216-223, 2021 05.
Article in English | MEDLINE | ID: covidwho-1071801

ABSTRACT

Multiple neurological problems have been reported in coronavirus disease-2019 (COVID-19) patients because severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely spreads to the central nervous system (CNS) via olfactory nerves or through the subarachnoid space along olfactory nerves into the brain's cerebrospinal fluid and then into the brain's interstitial space. We hypothesize that SARS-CoV-2 enters the subfornical organ (SFO) through the above routes and the circulating blood since circumventricular organs (CVOs) such as the SFO lack the blood-brain barrier, and infection of the SFO causes dysfunction of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), leading to hydroelectrolytic disorder. SARS-CoV-2 can readily enter SFO-PVN-SON neurons because these neurons express angiotensin-converting enzyme-2 receptors and proteolytic viral activators, which likely leads to neurodegeneration or neuroinflammation in these regions. Considering the pivotal role of SFO-PVN-SON circuitry in modulating hydroelectrolyte balance, SARS-CoV-2 infection in these regions could disrupt the neuroendocrine control of hydromineral homeostasis. This review proposes mechanisms by which SARS-CoV-2 infection of the SFO-PVN-SON pathway leads to hydroelectrolytic disorder in COVID-19 patients.


Subject(s)
COVID-19/complications , Paraventricular Hypothalamic Nucleus/pathology , Subfornical Organ/pathology , Water-Electrolyte Imbalance/etiology , Animals , COVID-19/pathology , Humans , Paraventricular Hypothalamic Nucleus/virology , Power Plants , Subfornical Organ/virology , Water-Electrolyte Imbalance/virology
8.
J Biomol Struct Dyn ; 40(13): 5917-5931, 2022 08.
Article in English | MEDLINE | ID: covidwho-1042572

ABSTRACT

SARS-CoV-2 is the etiological agent of COVID-19, which represents a global health emergency that was rapidly declared a pandemic by the World Health Organization. Currently, there is a dearth of effective targeted therapies against viruses. Natural products isolated from traditional herbal plants have had a huge impact on drug development aimed at various diseases. Lapachol is a 1,4- naphthoquinone compound that has been demonstrated to have therapeutic effects against several diseases. SARS-CoV-2 non-structural proteins (nsps) play an important role in the viral replication cycle. Nsp9 seems to play a key role in transcription of the RNA genome of SARS-CoV-2. Virtual screening by docking and molecular dynamics suggests that lapachol derivatives can interact with Nsp9 from SARS-CoV-2. Complexes of lapachol derivatives V, VI, VIII, IX, and XI with the Nsp9 RNA binding site were subjected to molecular dynamics assays, to assess the stability of the complexes via RMSD. All complexes were stable over the course of 100 ns dynamics assays. Analyses of the hydrogen bonds in the complexes showed that lapachol derivatives VI and IX demonstrated strongest binding, with a stable or increasing number of hydrogen bonds over time. Our results demonstrate that Nsp9 from SARS-CoV-2 could be an important target in prospecting for ligands with antiviral potential. In addition, we showed that lapachol derivatives are potential ligands for SARS-CoV-2 Nsp9.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Naphthoquinones , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Naphthoquinones/pharmacology , RNA , SARS-CoV-2 , Viral Proteins/chemistry
9.
Front Physiol ; 11: 587013, 2020.
Article in English | MEDLINE | ID: covidwho-1000129

ABSTRACT

Novel coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its impact on patients with comorbidities is clearly related to fatality cases, and diabetes has been linked to one of the most important causes of severity and mortality in SARS-CoV-2 infected patients. Substantial research progress has been made on COVID-19 therapeutics; however, effective treatments remain unsatisfactory. This unmet clinical need is robustly associated with the complexity of pathophysiological mechanisms described for COVID-19. Several key lung pathophysiological mechanisms promoted by SARS-CoV-2 have driven the response in normoglycemic and hyperglycemic subjects. There is sufficient evidence that glucose metabolism pathways in the lung are closely tied to bacterial proliferation, inflammation, oxidative stress, and pro-thrombotic responses, which lead to severe clinical outcomes. It is also likely that SARS-CoV-2 proliferation is affected by glucose metabolism of type I and type II cells. This review summarizes the current understanding of pathophysiology of SARS-CoV-2 in the lung of diabetic patients and highlights the changes in clinical outcomes of COVID-19 in normoglycemic and hyperglycemic conditions.

10.
Front Microbiol ; 11: 1818, 2020.
Article in English | MEDLINE | ID: covidwho-738869

ABSTRACT

Coronaviruses (CoVs) are a group of viruses from the family Coronaviridae that can infect humans and animals, causing mild to severe diseases. The ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a global threat, urging the development of new therapeutic strategies. Here we present a selection of relevant compounds that have been described from 2005 until now as having in vitro and/or in vivo antiviral activities against human and/or animal CoVs. We also present compounds that have reached clinical trials as well as further discussing the potentiality of other molecules for application in (re)emergent CoVs outbreaks. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential SARS-CoV-2 drug candidates.

SELECTION OF CITATIONS
SEARCH DETAIL